Nuprl Lemma : collect_accum-wf2

[A,B:Type]. ∀[P:B ⟶ 𝔹]. ∀[num:A ⟶ ℕ]. ∀[init:B]. ∀[f:B ⟶ A ⟶ B].
  (collect_accum(x.num[x];init;a,v.f[a;v];a.P[a]) ∈ {s:ℤ × B × (B Top)| (↑isl(snd(snd(s))))  (1 ≤ (fst(s)))} 
   ⟶ A
   ⟶ {s:ℤ × B × (B Top)| (↑isl(snd(snd(s))))  (1 ≤ (fst(s)))} )


Proof




Definitions occuring in Statement :  collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) nat: assert: b isl: isl(x) bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) le: A ≤ B implies:  Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] union: left right natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B uimplies: supposing a top: Top has-value: (a)↓ nat: spreadn: spread3 pi2: snd(t) pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q isl: isl(x) not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_apply: x[s1;s2] decidable: Dec(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) iff: ⇐⇒ Q rev_implies:  Q true: True isr: isr(x)

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (collect\_accum(x.num[x];init;a,v.f[a;v];a.P[a])  \mmember{}  \{s:\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)| 
                                                                                                          (\muparrow{}isl(snd(snd(s))))  {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\} 
      {}\mrightarrow{}  A
      {}\mrightarrow{}  \{s:\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)|  (\muparrow{}isl(snd(snd(s))))  {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\}  )



Date html generated: 2016_05_16-AM-10_12_21
Last ObjectModification: 2016_01_17-PM-01_22_26

Theory : new!event-ordering


Home Index