Nuprl Lemma : collect_accum_wf
∀[A,B:Type]. ∀[P:B ⟶ 𝔹]. ∀[num:A ⟶ ℕ]. ∀[init:B]. ∀[f:B ⟶ A ⟶ B].
  (collect_accum(x.num[x];init;a,v.f[a;v];a.P[a]) ∈ (ℤ × B × (B + Top)) ⟶ A ⟶ (ℤ × B × (B + Top)))
Proof
Definitions occuring in Statement : 
collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]), 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
union: left + right, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]), 
so_apply: x[s], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
has-value: (a)↓, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
spreadn: spread3, 
subtype_rel: A ⊆r B, 
top: Top, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (collect\_accum(x.num[x];init;a,v.f[a;v];a.P[a])  \mmember{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top))  {}\mrightarrow{}  A  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)))
Date html generated:
2016_05_16-AM-10_11_40
Last ObjectModification:
2015_12_28-PM-09_25_32
Theory : new!event-ordering
Home
Index