Nuprl Lemma : collect_accum_wf

[A,B:Type]. ∀[P:B ⟶ 𝔹]. ∀[num:A ⟶ ℕ]. ∀[init:B]. ∀[f:B ⟶ A ⟶ B].
  (collect_accum(x.num[x];init;a,v.f[a;v];a.P[a]) ∈ (ℤ × B × (B Top)) ⟶ A ⟶ (ℤ × B × (B Top)))


Proof




Definitions occuring in Statement :  collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) nat: bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  has-value: (a)↓ nat: so_lambda: λ2x.t[x] spreadn: spread3 subtype_rel: A ⊆B top: Top bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (collect\_accum(x.num[x];init;a,v.f[a;v];a.P[a])  \mmember{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top))  {}\mrightarrow{}  A  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)))



Date html generated: 2016_05_16-AM-10_11_40
Last ObjectModification: 2015_12_28-PM-09_25_32

Theory : new!event-ordering


Home Index