Nuprl Lemma : collect_filter-wf2
∀[A:Type]. ∀[P:{L:A List| 0 < ||L||} ⟶ 𝔹].
(collect_filter() ∈ {s:ℤ × {L:A List| 0 < ||L||
⇒ (¬↑P[L])} × ({L:A List| 0 < ||L|| ∧ (↑P[L])} + Top)|
(↑isl(snd(snd(s))))
⇒ (1 ≤ (fst(s)))} ⟶ bag(ℕ × {L:A List| 0 < ||L|| ∧ (↑P[L])} ))
Proof
Definitions occuring in Statement :
collect_filter: collect_filter()
,
length: ||as||
,
list: T List
,
nat: ℕ
,
assert: ↑b
,
isl: isl(x)
,
bool: 𝔹
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
pi1: fst(t)
,
pi2: snd(t)
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
union: left + right
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
collect_filter: collect_filter()
,
pi2: snd(t)
,
pi1: fst(t)
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
spreadn: spread3,
implies: P
⇒ Q
,
true: True
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
so_apply: x[s]
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
bfalse: ff
Latex:
\mforall{}[A:Type]. \mforall{}[P:\{L:A List| 0 < ||L||\} {}\mrightarrow{} \mBbbB{}].
(collect\_filter() \mmember{} \{s:\mBbbZ{}
\mtimes{} \{L:A List| 0 < ||L|| {}\mRightarrow{} (\mneg{}\muparrow{}P[L])\}
\mtimes{} (\{L:A List| 0 < ||L|| \mwedge{} (\muparrow{}P[L])\} + Top)|
(\muparrow{}isl(snd(snd(s)))) {}\mRightarrow{} (1 \mleq{} (fst(s)))\} {}\mrightarrow{} bag(\mBbbN{} \mtimes{} \{L:A List| 0 < ||L|| \mwedge{} (\muparrow{}P\000C[L])\} ))
Date html generated:
2016_05_16-AM-10_10_09
Last ObjectModification:
2016_01_17-PM-01_21_01
Theory : new!event-ordering
Home
Index