Nuprl Lemma : cond_equiv_to_causl
∀es:EO
∀[R:E ⟶ E ⟶ ℙ]. ∀[P:E ⟶ ℙ].
(R => λe,e'. (e < e')
⇒ (∀x,y:E. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ E)) ∨ (R y x))))
⇒ (∀x,y:E. (((P x) ∧ (P y))
⇒ (R x y
⇐⇒ (x < y)))))
Proof
Definitions occuring in Statement :
es-causl: (e < e')
,
es-E: E
,
event_ordering: EO
,
rel_implies: R1 => R2
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
cand: A c∧ B
,
es-causl: (e < e')
,
squash: ↓T
,
rev_implies: P
⇐ Q
,
trans: Trans(T;x,y.E[x; y])
,
guard: {T}
,
not: ¬A
,
false: False
Latex:
\mforall{}es:EO
\mforall{}[R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:E {}\mrightarrow{} \mBbbP{}].
(R => \mlambda{}e,e'. (e < e')
{}\mRightarrow{} (\mforall{}x,y:E. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (((R x y) \mvee{} (x = y)) \mvee{} (R y x))))
{}\mRightarrow{} (\mforall{}x,y:E. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (R x y \mLeftarrow{}{}\mRightarrow{} (x < y)))))
Date html generated:
2016_05_16-AM-10_34_28
Last ObjectModification:
2016_01_17-PM-01_21_52
Theory : new!event-ordering
Home
Index