Nuprl Lemma : cond_rel_equivalent
∀[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].
(Trans(T;x,y.Q x y)
⇒ R => Q
⇒ (∀x,y:T. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ T)) ∨ (R y x))))
⇒ (∀x,y:T. (((P x) ∧ (P y))
⇒ (R x y
⇐⇒ Q x y)))
supposing ∀x,y:T. ((Q x y)
⇒ (¬(Q y x))))
Proof
Definitions occuring in Statement :
rel_implies: R1 => R2
,
trans: Trans(T;x,y.E[x; y])
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
not: ¬A
,
false: False
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
rel_implies: R1 => R2
,
infix_ap: x f y
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cand: A c∧ B
,
or: P ∨ Q
Latex:
\mforall{}[T:Type]. \mforall{}[R,Q:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}].
(Trans(T;x,y.Q x y)
{}\mRightarrow{} R => Q
{}\mRightarrow{} (\mforall{}x,y:T. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (((R x y) \mvee{} (x = y)) \mvee{} (R y x))))
{}\mRightarrow{} (\mforall{}x,y:T. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (R x y \mLeftarrow{}{}\mRightarrow{} Q x y)))
supposing \mforall{}x,y:T. ((Q x y) {}\mRightarrow{} (\mneg{}(Q y x))))
Date html generated:
2016_05_16-AM-10_34_16
Last ObjectModification:
2015_12_28-PM-09_17_40
Theory : new!event-ordering
Home
Index