Nuprl Lemma : decidable-exists-finite

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(P[x]))  finite-type(T)  Dec(∃x:T. P[x]))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] finite-type: finite-type(T) exists: x:A. B[x] surject: Surj(A;B;f) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q nat: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a guard: {T}

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  Dec(\mexists{}x:T.  P[x]))



Date html generated: 2016_05_16-AM-10_23_51
Last ObjectModification: 2015_12_28-PM-09_20_20

Theory : new!event-ordering


Home Index