Nuprl Lemma : eo-restrict_wf
∀[es:EO]. ∀[P:E ⟶ 𝔹].  (eo-restrict(es;P) ∈ EO)
Proof
Definitions occuring in Statement : 
eo-restrict: eo-restrict(eo;P), 
es-E: E, 
event_ordering: EO, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
eo-restrict: eo-restrict(eo;P), 
eo-reset-dom: eo-reset-dom(es;d), 
es-dom: es-dom(es), 
es-E: E, 
es-base-E: es-base-E(es), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
bfalse: ff
Latex:
\mforall{}[es:EO].  \mforall{}[P:E  {}\mrightarrow{}  \mBbbB{}].    (eo-restrict(es;P)  \mmember{}  EO)
Date html generated:
2016_05_16-AM-09_14_05
Last ObjectModification:
2015_12_28-PM-09_58_41
Theory : new!event-ordering
Home
Index