Nuprl Lemma : eo_axioms_wf
∀[r:eo_record{i:l}()]. (eo_axioms(r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eo_axioms: eo_axioms(r), 
eo_record: eo_record{i:l}(), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
eo_record: eo_record{i:l}(), 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
guard: {T}, 
prop: ℙ, 
eo_axioms: eo_axioms(r), 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
infix_ap: x f y, 
so_apply: x[s], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[r:eo\_record\{i:l\}()].  (eo\_axioms(r)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-09_13_33
Last ObjectModification:
2015_12_28-PM-09_58_43
Theory : new!event-ordering
Home
Index