Nuprl Lemma : eo_record_cumulative
eo_record{i:l}() ⊆r eo_record{j:l} supposing Type ⊆r 𝕌{j}
Proof
Definitions occuring in Statement : 
eo_record: eo_record{i:l}(), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
eo_record: eo_record{i:l}(), 
record+: record+, 
record-select: r.x, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
prop: ℙ, 
record: record(x.T[x]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
sq_type: SQType(T), 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
eo\_record\{i:l\}()  \msubseteq{}r  eo\_record\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}
Date html generated:
2016_05_16-AM-09_13_16
Last ObjectModification:
2015_12_28-PM-09_58_54
Theory : new!event-ordering
Home
Index