Nuprl Lemma : eo_record_cumulative

eo_record{i:l}() ⊆eo_record{j:l} supposing Type ⊆r 𝕌{j}


Proof




Definitions occuring in Statement :  eo_record: eo_record{i:l}() uimplies: supposing a subtype_rel: A ⊆B universe: Type
Definitions unfolded in proof :  uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B eo_record: eo_record{i:l}() record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] guard: {T} prop: record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q sq_type: SQType(T) bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q top: Top so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
eo\_record\{i:l\}()  \msubseteq{}r  eo\_record\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}



Date html generated: 2016_05_16-AM-09_13_16
Last ObjectModification: 2015_12_28-PM-09_58_54

Theory : new!event-ordering


Home Index