Nuprl Lemma : eo_record_cumulative
eo_record{i:l}() ⊆r eo_record{j:l} supposing Type ⊆r 𝕌{j}
Proof
Definitions occuring in Statement : 
eo_record: eo_record{i:l}()
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
eo_record: eo_record{i:l}()
, 
record+: record+, 
record-select: r.x
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
prop: ℙ
, 
record: record(x.T[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
eo\_record\{i:l\}()  \msubseteq{}r  eo\_record\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}
Date html generated:
2016_05_16-AM-09_13_16
Last ObjectModification:
2015_12_28-PM-09_58_54
Theory : new!event-ordering
Home
Index