Nuprl Lemma : es-before-pred-length
∀[es:EO]. ∀[e:E].  ||before(e)|| = (||before(pred(e))|| + 1) ∈ ℤ supposing ¬↑first(e)
Proof
Definitions occuring in Statement : 
es-before: before(e), 
es-first: first(e), 
es-pred: pred(e), 
es-E: E, 
event_ordering: EO, 
length: ||as||, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
es-before: before(e), 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Latex:
\mforall{}[es:EO].  \mforall{}[e:E].    ||before(e)||  =  (||before(pred(e))||  +  1)  supposing  \mneg{}\muparrow{}first(e)
Date html generated:
2016_05_16-AM-09_37_43
Last ObjectModification:
2016_01_17-PM-01_27_52
Theory : new!event-ordering
Home
Index