Nuprl Lemma : es-causl-max-list

es:EO. ∀L:E List.  (0 < ||L||  (∀e:{e:E| (e ∈ L)} . ∃e':{e:E| (e ∈ L)} (e < e'))))


Proof




Definitions occuring in Statement :  es-causl: (e < e') es-E: E event_ordering: EO l_member: (x ∈ l) length: ||as|| list: List less_than: a < b all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B guard: {T} nat: int_seg: {i..j-} uimplies: supposing a ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top cand: c∧ B sorted-by: sorted-by(R;L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] le: A ≤ B less_than': less_than'(a;b) length: ||as|| list_ind: list_ind sq_type: SQType(T) less_than: a < b squash: T iff: ⇐⇒ Q cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff rev_implies:  Q l_all: (∀x∈L.P[x]) sq_stable: SqStable(P) true: True es-E: E es-base-E: es-base-E(es) l_contains: A ⊆ B

Latex:
\mforall{}es:EO.  \mforall{}L:E  List.    (0  <  ||L||  {}\mRightarrow{}  (\mneg{}(\mforall{}e:\{e:E|  (e  \mmember{}  L)\}  .  \mexists{}e':\{e:E|  (e  \mmember{}  L)\}  .  (e  <  e'))))



Date html generated: 2016_05_16-AM-09_22_13
Last ObjectModification: 2016_01_17-PM-01_31_38

Theory : new!event-ordering


Home Index