Nuprl Lemma : es-causl_weakening_p-locl

es:EO. ∀p:E ⟶ (E Top).  (causal-predecessor(es;p)  (∀e,e':E.  (e p< e'  (e < e'))))


Proof




Definitions occuring in Statement :  es-p-locl: p< e' causal-predecessor: causal-predecessor(es;p) es-causl: (e < e') es-E: E event_ordering: EO top: Top all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] union: left right
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] es-p-locl: p< e' exists: x:A. B[x] nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] p-fun-exp: f^n p-graph: p-graph(A;f) top: Top p-id: p-id() p-compose: g do-apply: do-apply(f;x) can-apply: can-apply(f;x) isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a guard: {T} causal-predecessor: causal-predecessor(es;p) and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A sq_type: SQType(T) assert: b true: True le: A ≤ B less_than': less_than'(a;b) squash: T uiff: uiff(P;Q) iff: ⇐⇒ Q bfalse: ff rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: bnot: ¬bb

Latex:
\mforall{}es:EO.  \mforall{}p:E  {}\mrightarrow{}  (E  +  Top).    (causal-predecessor(es;p)  {}\mRightarrow{}  (\mforall{}e,e':E.    (e  p<  e'  {}\mRightarrow{}  (e  <  e'))))



Date html generated: 2016_05_16-AM-10_31_30
Last ObjectModification: 2016_01_17-PM-01_26_45

Theory : new!event-ordering


Home Index