Nuprl Lemma : es-causle-retraction-squash

es:EO. ∀[T:Type]. ∀f:T ⟶ T. ((∀x:T. c≤ x)  retraction(T;f)) supposing strong-subtype(T;E)


Proof




Definitions occuring in Statement :  es-causle: c≤ e' es-E: E event_ordering: EO strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type retraction: retraction(T;f)
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B so_apply: x[s] strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] retraction: retraction(T;f) nat: es-causle: c≤ e' or: P ∨ Q guard: {T} label: ...$L... t iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q

Latex:
\mforall{}es:EO.  \mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x:T.  f  x  c\mleq{}  x)  {}\mRightarrow{}  retraction(T;f))  supposing  strong-subtype(T;E)



Date html generated: 2016_05_16-AM-09_22_33
Last ObjectModification: 2015_12_28-PM-09_54_58

Theory : new!event-ordering


Home Index