Nuprl Lemma : es-interval-induction

es:EO. ∀i:Id.
  ∀[P:e1:{e:E| loc(e) i ∈ Id}  ⟶ {e2:E| loc(e2) i ∈ Id}  ⟶ ℙ]
    (∀e1@i.∀e2≥e1.(∀e:E. ((e1 <loc e)  e ≤loc e2   P[e;e2]))  P[e1;e2]  ∀e1@i.∀e2≥e1.P[e1;e2])


Proof




Definitions occuring in Statement :  alle-ge: e'≥e.P[e'] alle-at: e@i.P[e] es-le: e ≤loc e'  es-locl: (e <loc e') es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: alle-ge: e'≥e.P[e'] so_lambda: λ2x.t[x] so_apply: x[s1;s2] es-locl: (e <loc e') and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] nat: cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top uiff: uiff(P;Q) alle-at: e@i.P[e] less_than: a < b squash: T

Latex:
\mforall{}es:EO.  \mforall{}i:Id.
    \mforall{}[P:e1:\{e:E|  loc(e)  =  i\}    {}\mrightarrow{}  \{e2:E|  loc(e2)  =  i\}    {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}e1@i.\mforall{}e2\mgeq{}e1.(\mforall{}e:E.  ((e1  <loc  e)  {}\mRightarrow{}  e  \mleq{}loc  e2    {}\mRightarrow{}  P[e;e2]))  {}\mRightarrow{}  P[e1;e2]
        {}\mRightarrow{}  \mforall{}e1@i.\mforall{}e2\mgeq{}e1.P[e1;e2])



Date html generated: 2016_05_16-AM-09_51_22
Last ObjectModification: 2016_01_17-PM-01_28_13

Theory : new!event-ordering


Home Index