Nuprl Lemma : es-interval-length-one-one

[es:EO]. ∀[d,b,a:E].  (b d ∈ E) supposing ((||[a, b]|| ||[a, d]|| ∈ ℤand a ≤loc d  and a ≤loc )


Proof




Definitions occuring in Statement :  es-interval: [e, e'] es-le: e ≤loc e'  es-E: E event_ordering: EO length: ||as|| uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q cand: c∧ B true: True squash: T subtype_rel: A ⊆B top: Top ge: i ≥  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A rev_implies:  Q

Latex:
\mforall{}[es:EO].  \mforall{}[d,b,a:E].    (b  =  d)  supposing  ((||[a,  b]||  =  ||[a,  d]||)  and  a  \mleq{}loc  d    and  a  \mleq{}loc  b  )



Date html generated: 2016_05_16-AM-09_33_26
Last ObjectModification: 2016_01_17-PM-01_30_05

Theory : new!event-ordering


Home Index