Nuprl Lemma : es-interval-open-interval
∀[es:EO]. ∀[e,e':E]. [e', e] = (if e' <loc e then [e'] else [] fi @ (e', e) @ [e]) ∈ (E List) supposing e' ≤loc e
Proof
Definitions occuring in Statement :
es-open-interval: (e, e')
,
es-interval: [e, e']
,
es-bless: e <loc e'
,
es-le: e ≤loc e'
,
es-E: E
,
event_ordering: EO
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
ifthenelse: if b then t else f fi
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
es-open-interval: (e, e')
,
es-interval: [e, e']
,
es-before: before(e)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
iff: P
⇐⇒ Q
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
es-le-before: ≤loc(e)
,
true: True
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}[es:EO]. \mforall{}[e,e':E].
[e', e] = (if e' <loc e then [e'] else [] fi @ (e', e) @ [e]) supposing e' \mleq{}loc e
Date html generated:
2016_05_16-AM-09_34_29
Last ObjectModification:
2016_01_17-PM-01_33_20
Theory : new!event-ordering
Home
Index