Nuprl Lemma : es-interval-open-interval

[es:EO]. ∀[e,e':E].  [e', e] (if e' <loc then [e'] else [] fi  (e', e) [e]) ∈ (E List) supposing e' ≤loc 


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-interval: [e, e'] es-bless: e <loc e' es-le: e ≤loc e'  es-E: E event_ordering: EO append: as bs cons: [a b] nil: [] list: List ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top and: P ∧ Q guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T es-open-interval: (e, e') es-interval: [e, e'] es-before: before(e) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] iff: ⇐⇒ Q bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q es-le-before: loc(e) true: True cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}[es:EO].  \mforall{}[e,e':E].
    [e',  e]  =  (if  e'  <loc  e  then  [e']  else  []  fi    @  (e',  e)  @  [e])  supposing  e'  \mleq{}loc  e 



Date html generated: 2016_05_16-AM-09_34_29
Last ObjectModification: 2016_01_17-PM-01_33_20

Theory : new!event-ordering


Home Index