Nuprl Lemma : es-interval-select

[es:EO]. ∀[e',e:E]. ∀[i:ℕ].
  firstn(i;[e, e']) if (i =z 0) then [] else [e, pred([e, e'][i])] fi  ∈ (E List) supposing i < ||[e, e']||


Proof




Definitions occuring in Statement :  es-interval: [e, e'] es-pred: pred(e) es-E: E event_ordering: EO firstn: firstn(n;as) select: L[n] length: ||as|| nil: [] list: List nat: ifthenelse: if then else fi  eq_int: (i =z j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T sq_type: SQType(T) subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) true: True

Latex:
\mforall{}[es:EO].  \mforall{}[e',e:E].  \mforall{}[i:\mBbbN{}].
    firstn(i;[e,  e'])  =  if  (i  =\msubz{}  0)  then  []  else  [e,  pred([e,  e'][i])]  fi    supposing  i  <  ||[e,  e']||



Date html generated: 2016_05_16-AM-09_34_13
Last ObjectModification: 2016_01_17-PM-01_33_50

Theory : new!event-ordering


Home Index