Nuprl Lemma : es-loc-pred-plus
∀[es:EO]. ∀[x,y:E]. loc(x) = loc(y) ∈ Id supposing x λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))+ y
Proof
Definitions occuring in Statement :
es-first: first(e)
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
rel_plus: R+
,
Id: Id
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
cand: A c∧ B
,
infix_ap: x f y
,
not: ¬A
,
lambda: λx.A[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rel_plus: R+
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
subtype_rel: A ⊆r B
,
cand: A c∧ B
,
es-E: E
,
es-base-E: es-base-E(es)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
rel_exp: R^n
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
int_upper: {i...}
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}[es:EO]. \mforall{}[x,y:E]. loc(x) = loc(y) supposing x \mlambda{}x,y. ((\mneg{}\muparrow{}first(y)) c\mwedge{} (x = pred(y)))\msupplus{} y
Date html generated:
2016_05_16-AM-09_17_45
Last ObjectModification:
2016_01_17-PM-01_31_10
Theory : new!event-ordering
Home
Index