Nuprl Lemma : es-locl-iff
∀the_es:EO. ∀e,e':E. ((e <loc e')
⇐⇒ (¬↑first(e')) ∧ ((e = pred(e') ∈ E) ∨ (e <loc pred(e'))))
Proof
Definitions occuring in Statement :
es-locl: (e <loc e')
,
es-first: first(e)
,
es-pred: pred(e)
,
es-E: E
,
event_ordering: EO
,
assert: ↑b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
or: P ∨ Q
,
and: P ∧ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
cand: A c∧ B
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
rev_implies: P
⇐ Q
,
es-E: E
,
es-base-E: es-base-E(es)
,
uimplies: b supposing a
,
or: P ∨ Q
,
not: ¬A
,
false: False
,
guard: {T}
,
trans: Trans(T;x,y.E[x; y])
Latex:
\mforall{}the$_{es}$:EO. \mforall{}e,e':E. ((e <loc e') \mLeftarrow{}{}\mRightarrow{} (\mneg{}\muparrow{}first(e')) \mwedge{} ((e = pred(e')) \mvee{} (e \000C<loc pred(e'))))
Date html generated:
2016_05_16-AM-09_18_27
Last ObjectModification:
2015_12_28-PM-09_56_36
Theory : new!event-ordering
Home
Index