Nuprl Lemma : es-pplus-alle-between2

es:EO. ∀e1:E. ∀e2:{e:E| loc(e) loc(e1) ∈ Id} .
  ∀[Q:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ]. ([e1,e2]~([a,b].∀e∈[a,b].Q[e])+ ⇐⇒ e1 ≤loc e2  ∧ ∀e∈[e1,e2].Q[e])


Proof




Definitions occuring in Statement :  es-pplus: [e1,e2]~([a,b].p[a; b])+ alle-between2: e∈[e1,e2].P[e] es-le: e ≤loc e'  es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a so_apply: x[s1;s2] prop: rev_implies:  Q es-pplus: [e1,e2]~([a,b].p[a; b])+ es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b] exists: x:A. B[x] alle-between2: e∈[e1,e2].P[e] not: ¬A int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top le: A ≤ B less_than: a < b subtype_rel: A ⊆B uiff: uiff(P;Q) subtract: m sq_type: SQType(T) guard: {T} upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff concat: concat(ll) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] squash: T true: True cand: c∧ B es-locl: (e <loc e') less_than': less_than'(a;b) nat: ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb assert: b

Latex:
\mforall{}es:EO.  \mforall{}e1:E.  \mforall{}e2:\{e:E|  loc(e)  =  loc(e1)\}  .
    \mforall{}[Q:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}]
        ([e1,e2]\msim{}([a,b].\mforall{}e\mmember{}[a,b].Q[e])+  \mLeftarrow{}{}\mRightarrow{}  e1  \mleq{}loc  e2    \mwedge{}  \mforall{}e\mmember{}[e1,e2].Q[e])



Date html generated: 2016_05_16-AM-09_58_29
Last ObjectModification: 2016_01_17-PM-01_30_21

Theory : new!event-ordering


Home Index