Nuprl Lemma : es-pplus-first-since-exit

es:EO. ∀e1:E. ∀e2:{e:E| loc(e) loc(e1) ∈ Id} .
  ∀[Q,R:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ].
    ((∀e:{e:E| loc(e) loc(e1) ∈ Id} Dec(Q[e]))
     ([e1,e2]~([a,b].b first e ≥ a.Q[e] ∧ ∀e∈[a,b).¬R[e])+ ⇐⇒ e1 ≤loc e2  ∧ Q[e2] ∧ ∀e∈[e1,e2].R[e]  Q[e]))


Proof




Definitions occuring in Statement :  es-pplus: [e1,e2]~([a,b].p[a; b])+ es-first-since: e2 first e ≥ e1.P[e] alle-between2: e∈[e1,e2].P[e] alle-between1: e∈[e1,e2).P[e] es-le: e ≤loc e'  es-loc: loc(e) es-E: E event_ordering: EO Id: Id decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a so_apply: x[s1;s2] rev_implies:  Q subtype_rel: A ⊆B guard: {T} cand: c∧ B alle-between1: e∈[e1,e2).P[e] alle-between2: e∈[e1,e2].P[e] es-le: e ≤loc e'  or: P ∨ Q not: ¬A false: False es-first-since: e2 first e ≥ e1.P[e] squash: T

Latex:
\mforall{}es:EO.  \mforall{}e1:E.  \mforall{}e2:\{e:E|  loc(e)  =  loc(e1)\}  .
    \mforall{}[Q,R:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}e:\{e:E|  loc(e)  =  loc(e1)\}  .  Dec(Q[e]))
        {}\mRightarrow{}  ([e1,e2]\msim{}([a,b].b  =  first  e  \mgeq{}  a.Q[e]  \mwedge{}  \mforall{}e\mmember{}[a,b).\mneg{}R[e])+
              \mLeftarrow{}{}\mRightarrow{}  e1  \mleq{}loc  e2    \mwedge{}  Q[e2]  \mwedge{}  \mforall{}e\mmember{}[e1,e2].R[e]  {}\mRightarrow{}  Q[e]))



Date html generated: 2016_05_16-AM-09_59_08
Last ObjectModification: 2016_01_17-PM-01_23_27

Theory : new!event-ordering


Home Index