Nuprl Lemma : es-pplus-first-since
∀es:EO. ∀e1:E. ∀e2:{e:E| loc(e) = loc(e1) ∈ Id} .
∀[Q:{e:E| loc(e) = loc(e1) ∈ Id} ⟶ ℙ]
((∀e:{e:E| loc(e) = loc(e1) ∈ Id} . Dec(Q[e]))
⇒ ([e1,e2]~([a,b].b = first e ≥ a.Q[e])+
⇐⇒ e1 ≤loc e2 ∧ Q[e2]))
Proof
Definitions occuring in Statement :
es-pplus: [e1,e2]~([a,b].p[a; b])+
,
es-first-since: e2 = first e ≥ e1.P[e]
,
es-le: e ≤loc e'
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_apply: x[s1;s2]
,
es-pplus: [e1,e2]~([a,b].p[a; b])+
,
es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b]
,
exists: ∃x:A. B[x]
,
es-first-since: e2 = first e ≥ e1.P[e]
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
decidable: Dec(P)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
nat: ℕ
,
ge: i ≥ j
,
alle-at: ∀e@i.P[e]
,
existse-between1: ∃e∈[e1,e2).P[e]
,
cand: A c∧ B
,
less_than: a < b
,
squash: ↓T
,
alle-between1: ∀e∈[e1,e2).P[e]
Latex:
\mforall{}es:EO. \mforall{}e1:E. \mforall{}e2:\{e:E| loc(e) = loc(e1)\} .
\mforall{}[Q:\{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}]
((\mforall{}e:\{e:E| loc(e) = loc(e1)\} . Dec(Q[e]))
{}\mRightarrow{} ([e1,e2]\msim{}([a,b].b = first e \mgeq{} a.Q[e])+ \mLeftarrow{}{}\mRightarrow{} e1 \mleq{}loc e2 \mwedge{} Q[e2]))
Date html generated:
2016_05_16-AM-09_58_53
Last ObjectModification:
2016_01_17-PM-01_24_10
Theory : new!event-ordering
Home
Index