Nuprl Lemma : es-pplus-partition

es:EO. ∀e1,e2,b:E.
  ∀[Q:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ {e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ]
    ((e1 <loc b)  b ≤loc e2   [e1,pred(b)]~([a,b].Q[a;b])+  [b,e2]~([a,b].Q[a;b])+  [e1,e2]~([a,b].Q[a;b])+)


Proof




Definitions occuring in Statement :  es-pplus: [e1,e2]~([a,b].p[a; b])+ es-le: e ≤loc e'  es-locl: (e <loc e') es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q es-pplus: [e1,e2]~([a,b].p[a; b])+ member: t ∈ T prop: uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] es-locl: (e <loc e') and: P ∧ Q not: ¬A false: False

Latex:
\mforall{}es:EO.  \mforall{}e1,e2,b:E.
    \mforall{}[Q:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}]
        ((e1  <loc  b)
        {}\mRightarrow{}  b  \mleq{}loc  e2 
        {}\mRightarrow{}  [e1,pred(b)]\msim{}([a,b].Q[a;b])+
        {}\mRightarrow{}  [b,e2]\msim{}([a,b].Q[a;b])+
        {}\mRightarrow{}  [e1,e2]\msim{}([a,b].Q[a;b])+)



Date html generated: 2016_05_16-AM-09_58_36
Last ObjectModification: 2015_12_28-PM-09_30_51

Theory : new!event-ordering


Home Index