Step
*
of Lemma
es-pplus_functionality_wrt_implies
∀es:EO. ∀e1:E. ∀e2:{e:E| loc(e) = loc(e1) ∈ Id} .
∀[p,p':{e:E| loc(e) = loc(e1) ∈ Id} ⟶ {e:E| loc(e) = loc(e1) ∈ Id} ⟶ ℙ].
((∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ {p[a;b]
⇒ p'[a;b]}))
⇒ {[e1,e2]~([a,b].p[a;b])+
⇒ [e1,e2]~([a,b].p'[a;b])+})
BY
{ ((((((((InstLemma `es-pstar-q_functionality_wrt_implies` [])
THEN RepeatFor 4 (ParallelLast)
THEN (InstHyp [⌜p⌝] (-1))⋅)
THENA Auto
)
THEN (Thin (-2))
THEN ParallelLast
THEN (SimpleInstHyp ⌜p'⌝ (-1))⋅)
THENA Auto
)
THEN Unfold `es-pplus` 0
THEN D 0)
THENA Auto
)
THEN ThinTrivial
THEN ThinTrivial
THEN Trivial) }
Latex:
Latex:
\mforall{}es:EO. \mforall{}e1:E. \mforall{}e2:\{e:E| loc(e) = loc(e1)\} .
\mforall{}[p,p':\{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}].
((\mforall{}a,b:\{e:E| loc(e) = loc(e1)\} . ((a \mmember{} [e1, e2]) {}\mRightarrow{} (b \mmember{} [e1, e2]) {}\mRightarrow{} \{p[a;b] {}\mRightarrow{} p'[a;b]\}))
{}\mRightarrow{} \{[e1,e2]\msim{}([a,b].p[a;b])+ {}\mRightarrow{} [e1,e2]\msim{}([a,b].p'[a;b])+\})
By
Latex:
((((((((InstLemma `es-pstar-q\_functionality\_wrt\_implies` [])
THEN RepeatFor 4 (ParallelLast)
THEN (InstHyp [\mkleeneopen{}p\mkleeneclose{}] (-1))\mcdot{})
THENA Auto
)
THEN (Thin (-2))
THEN ParallelLast
THEN (SimpleInstHyp \mkleeneopen{}p'\mkleeneclose{} (-1))\mcdot{})
THENA Auto
)
THEN Unfold `es-pplus` 0
THEN D 0)
THENA Auto
)
THEN ThinTrivial
THEN ThinTrivial
THEN Trivial)
Home
Index