Nuprl Lemma : es-pred-one-one
∀[es:EO]. ∀[a,b:E]. (a = b ∈ E) supposing ((pred(a) = pred(b) ∈ E) and (¬↑first(b)) and (¬↑first(a)))
Proof
Definitions occuring in Statement :
es-first: first(e)
,
es-pred: pred(e)
,
es-E: E
,
event_ordering: EO
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
guard: {T}
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
prop: ℙ
,
false: False
Latex:
\mforall{}[es:EO]. \mforall{}[a,b:E]. (a = b) supposing ((pred(a) = pred(b)) and (\mneg{}\muparrow{}first(b)) and (\mneg{}\muparrow{}first(a)))
Date html generated:
2016_05_16-AM-09_23_47
Last ObjectModification:
2015_12_28-PM-09_51_21
Theory : new!event-ordering
Home
Index