Step
*
of Lemma
es-pred_property
∀es:EO. ∀e:E.
{(loc(pred(e)) = loc(e) ∈ Id)
∧ (pred(e) < e)
∧ (∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id)}
supposing ¬↑first(e)
BY
{ (InstLemma `es-pred_property_base` []⋅
THEN RepeatFor 2 (ParallelLast')
THEN Unfold `guard` 0
THEN (D 0 THENA Auto)
THEN SplitAndConcl
THEN SplitAndHyps
THEN Try (Trivial)) }
1
1. es : EO@i'
2. e : E@i
3. loc(pred(e)) = loc(e) ∈ Id
4. (pred(e) < e) ∨ (pred(e) = e ∈ es-base-E(es))
5. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ es-base-E(es)) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
6. ¬↑first(e)
⊢ (pred(e) < e)
2
1. es : EO@i'
2. e : E@i
3. loc(pred(e)) = loc(e) ∈ Id
4. (pred(e) < e) ∨ (pred(e) = e ∈ es-base-E(es))
5. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ es-base-E(es)) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
6. ¬↑first(e)
⊢ ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
Latex:
Latex:
\mforall{}es:EO. \mforall{}e:E.
\{(loc(pred(e)) = loc(e))
\mwedge{} (pred(e) < e)
\mwedge{} (\mforall{}e':E. (e' < e) {}\mRightarrow{} ((e' = pred(e)) \mvee{} (e' < pred(e))) supposing loc(e') = loc(e))\}
supposing \mneg{}\muparrow{}first(e)
By
Latex:
(InstLemma `es-pred\_property\_base` []\mcdot{}
THEN RepeatFor 2 (ParallelLast')
THEN Unfold `guard` 0
THEN (D 0 THENA Auto)
THEN SplitAndConcl
THEN SplitAndHyps
THEN Try (Trivial))
Home
Index