Nuprl Lemma : es-pstar-q-trivial

es:EO. ∀e1:E. ∀e2:{e:E| loc(e) loc(e1) ∈ Id} .
  ∀[p,q:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ {e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ].
    (e1 ≤loc e2   q[e1;e2]  [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b])


Proof




Definitions occuring in Statement :  es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b] es-le: e ≤loc e'  es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b] exists: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q subtract: m cand: c∧ B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top es-locl: (e <loc e') es-causl: (e < e') le: A ≤ B subtype_rel: A ⊆B uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q es-E: E es-base-E: es-base-E(es) iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}es:EO.  \mforall{}e1:E.  \mforall{}e2:\{e:E|  loc(e)  =  loc(e1)\}  .
    \mforall{}[p,q:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}].
        (e1  \mleq{}loc  e2    {}\mRightarrow{}  q[e1;e2]  {}\mRightarrow{}  [e1;e2]\msim{}([a,b].p[a;b])*[a,b].q[a;b])



Date html generated: 2016_05_16-AM-09_55_26
Last ObjectModification: 2016_01_17-PM-01_27_17

Theory : new!event-ordering


Home Index