Nuprl Lemma : es-pstar-q_wf
∀[es:EO]. ∀[e1:E]. ∀[e2:{e:E| loc(e) = loc(e1) ∈ Id} ]. ∀[p,q:{e:E| loc(e) = loc(e1) ∈ Id}
⟶ {e:E| loc(e) = loc(e1) ∈ Id}
⟶ ℙ].
([e1;e2]~([a,b].p[a;b])*[a,b].q[a;b] ∈ ℙ)
Proof
Definitions occuring in Statement :
es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b]
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
es-pstar-q: [e1;e2]~([a,b].p[a; b])*[a,b].q[a; b]
,
and: P ∧ Q
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
nat_plus: ℕ+
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
uiff: uiff(P;Q)
,
subtract: n - m
,
so_apply: x[s]
,
so_apply: x[s1;s2]
,
less_than: a < b
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[es:EO]. \mforall{}[e1:E]. \mforall{}[e2:\{e:E| loc(e) = loc(e1)\} ]. \mforall{}[p,q:\{e:E| loc(e) = loc(e1)\}
{}\mrightarrow{} \{e:E| loc(e) = loc(e1)\}
{}\mrightarrow{} \mBbbP{}].
([e1;e2]\msim{}([a,b].p[a;b])*[a,b].q[a;b] \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-09_55_16
Last ObjectModification:
2016_01_17-PM-01_23_04
Theory : new!event-ordering
Home
Index