Nuprl Lemma : es-subinterval

es:EO. ∀e2,e1:E.  (e1 ≤loc e2   (∀n:ℕ(∃e∈(e1,e2].||[e1, pred(e)]|| n ∈ ℤsupposing (n < ||[e1, e2]|| and 0 < n))\000C)


Proof




Definitions occuring in Statement :  existse-between3: e∈(e1,e2].P[e] es-interval: [e, e'] es-le: e ≤loc e'  es-pred: pred(e) es-E: E event_ordering: EO length: ||as|| nat: less_than: a < b uimplies: supposing a all: x:A. B[x] implies:  Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: uimplies: supposing a nat: all: x:A. B[x] and: P ∧ Q so_apply: x[s] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} iff: ⇐⇒ Q or: P ∨ Q cand: c∧ B decidable: Dec(P) existse-between3: e∈(e1,e2].P[e] exists: x:A. B[x] not: ¬A false: False true: True top: Top squash: T subtype_rel: A ⊆B ge: i ≥  less_than: a < b uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla)

Latex:
\mforall{}es:EO.  \mforall{}e2,e1:E.
    (e1  \mleq{}loc  e2    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (\mexists{}e\mmember{}(e1,e2].||[e1,  pred(e)]||  =  n)  supposing  (n  <  ||[e1,  e2]||  and  0  <  n)))



Date html generated: 2016_05_16-AM-09_46_38
Last ObjectModification: 2016_01_17-PM-01_26_51

Theory : new!event-ordering


Home Index