Nuprl Lemma : existse-before-iff
∀es:EO. ∀e':E.
∀[P:{e:E| loc(e) = loc(e') ∈ Id} ⟶ ℙ]. (∃e<e'.P[e]
⇐⇒ (¬↑first(e')) c∧ (P[pred(e')] ∨ ∃e<pred(e').P[e]))
Proof
Definitions occuring in Statement :
existse-before: ∃e<e'.P[e]
,
es-first: first(e)
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
cand: A c∧ B
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
or: P ∨ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
cand: A c∧ B
,
not: ¬A
,
false: False
,
existse-before: ∃e<e'.P[e]
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
es-E: E
,
es-base-E: es-base-E(es)
,
uimplies: b supposing a
,
guard: {T}
,
or: P ∨ Q
,
label: ...$L... t
,
subtype_rel: A ⊆r B
,
es-locl: (e <loc e')
Latex:
\mforall{}es:EO. \mforall{}e':E.
\mforall{}[P:\{e:E| loc(e) = loc(e')\} {}\mrightarrow{} \mBbbP{}]
(\mexists{}e<e'.P[e] \mLeftarrow{}{}\mRightarrow{} (\mneg{}\muparrow{}first(e')) c\mwedge{} (P[pred(e')] \mvee{} \mexists{}e<pred(e').P[e]))
Date html generated:
2016_05_16-AM-09_41_17
Last ObjectModification:
2015_12_28-PM-09_42_57
Theory : new!event-ordering
Home
Index