Nuprl Lemma : existse-before-iff

es:EO. ∀e':E.
  ∀[P:{e:E| loc(e) loc(e') ∈ Id}  ⟶ ℙ]. (∃e<e'.P[e] ⇐⇒ (¬↑first(e')) c∧ (P[pred(e')] ∨ ∃e<pred(e').P[e]))


Proof




Definitions occuring in Statement :  existse-before: e<e'.P[e] es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id assert: b uall: [x:A]. B[x] cand: c∧ B prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q cand: c∧ B not: ¬A false: False existse-before: e<e'.P[e] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q es-E: E es-base-E: es-base-E(es) uimplies: supposing a guard: {T} or: P ∨ Q label: ...$L... t subtype_rel: A ⊆B es-locl: (e <loc e')

Latex:
\mforall{}es:EO.  \mforall{}e':E.
    \mforall{}[P:\{e:E|  loc(e)  =  loc(e')\}    {}\mrightarrow{}  \mBbbP{}]
        (\mexists{}e<e'.P[e]  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}\muparrow{}first(e'))  c\mwedge{}  (P[pred(e')]  \mvee{}  \mexists{}e<pred(e').P[e]))



Date html generated: 2016_05_16-AM-09_41_17
Last ObjectModification: 2015_12_28-PM-09_42_57

Theory : new!event-ordering


Home Index