Nuprl Lemma : firstn-es-open-interval

[es:EO]. ∀[e1,e2:E]. ∀[n:ℕ||(e1, e2)||].  (firstn(n;(e1, e2)) (e1, (e1, e2)[n]) ∈ (E List))


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-E: E event_ordering: EO firstn: firstn(n;as) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T iff: ⇐⇒ Q l_member: (x ∈ l) cand: c∧ B gt: i > j true: True rev_implies:  Q es-open-interval: (e, e') sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] es-before: before(e) bool: 𝔹 unit: Unit it:

Latex:
\mforall{}[es:EO].  \mforall{}[e1,e2:E].  \mforall{}[n:\mBbbN{}||(e1,  e2)||].    (firstn(n;(e1,  e2))  =  (e1,  (e1,  e2)[n]))



Date html generated: 2016_05_16-AM-09_36_50
Last ObjectModification: 2016_01_17-PM-01_28_33

Theory : new!event-ordering


Home Index