Nuprl Lemma : flow-state-compression_wf
∀[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[A:Type]. ∀[start:{i:Id| (i ∈ S)}  ⟶ A]. ∀[c:A ⟶ T ⟶ A].
∀[H:{i:Id| (i ∈ S)}  ⟶ {i:Id| (i ∈ S)}  ⟶ A ⟶ (T + Top)].
  (flow-state-compression(S;T;F;H;start;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
flow-state-compression: flow-state-compression(S;T;F;H;start;c)
, 
information-flow: information-flow(T;S)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
flow-state-compression: flow-state-compression(S;T;F;H;start;c)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
information-flow: information-flow(T;S)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Latex:
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[A:Type].  \mforall{}[start:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A].
\mforall{}[c:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[H:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  \{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A  {}\mrightarrow{}  (T  +  Top)].
    (flow-state-compression(S;T;F;H;start;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-10_07_14
Last ObjectModification:
2015_12_28-PM-09_27_09
Theory : new!event-ordering
Home
Index