Nuprl Lemma : flow-state-compression_wf

[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[A:Type]. ∀[start:{i:Id| (i ∈ S)}  ⟶ A]. ∀[c:A ⟶ T ⟶ A].
[H:{i:Id| (i ∈ S)}  ⟶ {i:Id| (i ∈ S)}  ⟶ A ⟶ (T Top)].
  (flow-state-compression(S;T;F;H;start;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  flow-state-compression: flow-state-compression(S;T;F;H;start;c) information-flow: information-flow(T;S) Id: Id l_member: (x ∈ l) list: List uall: [x:A]. B[x] top: Top prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  flow-state-compression: flow-state-compression(S;T;F;H;start;c) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: all: x:A. B[x] information-flow: information-flow(T;S) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s]

Latex:
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[A:Type].  \mforall{}[start:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A].
\mforall{}[c:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[H:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  \{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A  {}\mrightarrow{}  (T  +  Top)].
    (flow-state-compression(S;T;F;H;start;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_07_14
Last ObjectModification: 2015_12_28-PM-09_27_09

Theory : new!event-ordering


Home Index