Nuprl Lemma : implies-es-pred

[the_es:EO]. ∀[e,e':E].  pred(e') ∈ supposing (e <loc e') ∧ (∀e1:E. ((e <loc e1) ∧ (e1 <loc e'))))


Proof




Definitions occuring in Statement :  es-locl: (e <loc e') es-pred: pred(e) es-E: E event_ordering: EO uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q cand: c∧ B uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A implies:  Q iff: ⇐⇒ Q false: False guard: {T} rev_implies:  Q or: P ∨ Q

Latex:
\mforall{}[the$_{es}$:EO].  \mforall{}[e,e':E].
    e  =  pred(e')  supposing  (e  <loc  e')  \mwedge{}  (\mforall{}e1:E.  (\mneg{}((e  <loc  e1)  \mwedge{}  (e1  <loc  e'))))



Date html generated: 2016_05_16-AM-09_23_21
Last ObjectModification: 2015_12_28-PM-09_52_26

Theory : new!event-ordering


Home Index