Nuprl Lemma : inject-composes

[A,B0,B1,C:Type]. ∀[f:A ⟶ B0]. ∀[g:B1 ⟶ C].
  (Inj(A;C;g f)) supposing (Inj(B1;C;g) and Inj(A;B0;f) and strong-subtype(B0;B1))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) inject: Inj(A;B;f) compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a inject: Inj(A;B;f) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] strong-subtype: strong-subtype(A;B) cand: c∧ B prop: guard: {T} compose: g

Latex:
\mforall{}[A,B0,B1,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B0].  \mforall{}[g:B1  {}\mrightarrow{}  C].
    (Inj(A;C;g  o  f))  supposing  (Inj(B1;C;g)  and  Inj(A;B0;f)  and  strong-subtype(B0;B1))



Date html generated: 2016_05_16-AM-10_21_15
Last ObjectModification: 2015_12_28-PM-09_22_39

Theory : new!event-ordering


Home Index