Nuprl Lemma : iseg-es-interval

[es:EO]. ∀[L:E List]. ∀[e1,e2:E].  (L [e1, last(L)] ∈ (E List)) supposing ((¬↑null(L)) and L ≤ [e1, e2])


Proof




Definitions occuring in Statement :  es-interval: [e, e'] es-E: E event_ordering: EO iseg: l1 ≤ l2 last: last(L) null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a es-interval: [e, e'] all: x:A. B[x] implies:  Q es-le-before: loc(e) exists: x:A. B[x] and: P ∧ Q prop: subtype_rel: A ⊆B top: Top true: True so_lambda: λ2x.t[x] so_apply: x[s] squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q not: ¬A uiff: uiff(P;Q) l_member: (x ∈ l) cand: c∧ B nat: decidable: Dec(P) or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) false: False le: A ≤ B es-locl: (e <loc e') last: last(L) cons: [a b] subtract: m less_than': less_than'(a;b)

Latex:
\mforall{}[es:EO].  \mforall{}[L:E  List].  \mforall{}[e1,e2:E].    (L  =  [e1,  last(L)])  supposing  ((\mneg{}\muparrow{}null(L))  and  L  \mleq{}  [e1,  e2])



Date html generated: 2016_05_16-AM-09_38_34
Last ObjectModification: 2016_01_17-PM-01_28_26

Theory : new!event-ordering


Home Index