Nuprl Lemma : iseg-filter-es-interval

[es:EO]. ∀[L:E List]. ∀[e1,e2:E]. ∀[P:{x:E| (x ∈ [e1, e2])}  ⟶ 𝔹].
  (L filter(P;[e1, last(L)]) ∈ (E List)) supposing ((¬↑null(L)) and L ≤ filter(P;[e1, e2]))


Proof




Definitions occuring in Statement :  es-interval: [e, e'] es-E: E event_ordering: EO iseg: l1 ≤ l2 last: last(L) l_member: (x ∈ l) null: null(as) filter: filter(P;l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: subtype_rel: A ⊆B top: Top so_lambda: λ2x.t[x] so_apply: x[s1;s2] not: ¬A false: False guard: {T} rev_implies:  Q cand: c∧ B so_apply: x[s] so_lambda: λ2y.t[x; y] or: P ∨ Q es-le: e ≤loc e'  es-locl: (e <loc e') irrefl: Irrefl(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])

Latex:
\mforall{}[es:EO].  \mforall{}[L:E  List].  \mforall{}[e1,e2:E].  \mforall{}[P:\{x:E|  (x  \mmember{}  [e1,  e2])\}    {}\mrightarrow{}  \mBbbB{}].
    (L  =  filter(P;[e1,  last(L)]))  supposing  ((\mneg{}\muparrow{}null(L))  and  L  \mleq{}  filter(P;[e1,  e2]))



Date html generated: 2016_05_16-AM-09_38_49
Last ObjectModification: 2015_12_28-PM-09_58_05

Theory : new!event-ordering


Home Index