Nuprl Lemma : last-decidable
∀es:EO. ∀e:E.
  ∀[P:{a:E| loc(a) = loc(e) ∈ Id}  ⟶ ℙ]
    ((∀a:{a:E| loc(a) = loc(e) ∈ Id} . Dec(P[a]))
    ⇒ (∀e'≤e.P[e'] ⇐⇒ P[e] ∨ ∃e'≤e.(¬(P[e'] ⇐⇒ P[e])) ∧ ∀e''∈(e',e].P[e''] ⇐⇒ P[e]))
Proof
Definitions occuring in Statement : 
alle-between3: ∀e∈(e1,e2].P[e], 
alle-le: ∀e≤e'.P[e], 
existse-le: ∃e≤e'.P[e], 
es-loc: loc(e), 
es-E: E, 
event_ordering: EO, 
Id: Id, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
guard: {T}, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
true: True, 
alle-between3: ∀e∈(e1,e2].P[e], 
existse-le: ∃e≤e'.P[e], 
alle-le: ∀e≤e'.P[e], 
cand: A c∧ B, 
es-locl: (e <loc e')
Latex:
\mforall{}es:EO.  \mforall{}e:E.
    \mforall{}[P:\{a:E|  loc(a)  =  loc(e)\}    {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}a:\{a:E|  loc(a)  =  loc(e)\}  .  Dec(P[a]))
        {}\mRightarrow{}  (\mforall{}e'\mleq{}e.P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]  \mvee{}  \mexists{}e'\mleq{}e.(\mneg{}(P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]))  \mwedge{}  \mforall{}e''\mmember{}(e',e].P[e'']  \mLeftarrow{}{}\mRightarrow{}  P[e]))
Date html generated:
2016_05_16-AM-09_51_09
Last ObjectModification:
2015_12_28-PM-09_38_49
Theory : new!event-ordering
Home
Index