Nuprl Lemma : last-transition

es:EO. ∀e:E. ∀P:{a:E| loc(a) loc(e) ∈ Id}  ⟶ 𝔹.
  (∀e'≤e.P[e'] P[e] ∨ ∃e'≤e.(¬P[e'] P[e]) ∧ ∀e''∈(e',e].P[e''] P[e])


Proof




Definitions occuring in Statement :  alle-between3: e∈(e1,e2].P[e] alle-le: e≤e'.P[e] existse-le: e≤e'.P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id bool: 𝔹 so_apply: x[s] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: or: P ∨ Q and: P ∧ Q uimplies: supposing a guard: {T} alle-le: e≤e'.P[e] decidable: Dec(P) not: ¬A false: False alle-between3: e∈(e1,e2].P[e] existse-le: e≤e'.P[e] exists: x:A. B[x] cand: c∧ B es-locl: (e <loc e')

Latex:
\mforall{}es:EO.  \mforall{}e:E.  \mforall{}P:\{a:E|  loc(a)  =  loc(e)\}    {}\mrightarrow{}  \mBbbB{}.
    (\mforall{}e'\mleq{}e.P[e']  =  P[e]  \mvee{}  \mexists{}e'\mleq{}e.(\mneg{}P[e']  =  P[e])  \mwedge{}  \mforall{}e''\mmember{}(e',e].P[e'']  =  P[e])



Date html generated: 2016_05_16-AM-09_50_58
Last ObjectModification: 2015_12_28-PM-09_36_22

Theory : new!event-ordering


Home Index