Nuprl Lemma : loc-ordered-equality

es:EO. ∀as,bs:E List.
  (loc-ordered(es;as)  loc-ordered(es;bs)  (as bs ∈ (E List) ⇐⇒ ∀e:E. ((e ∈ as) ⇐⇒ (e ∈ bs))))


Proof




Definitions occuring in Statement :  loc-ordered: loc-ordered(es;L) es-E: E event_ordering: EO l_member: (x ∈ l) list: List all: x:A. B[x] iff: ⇐⇒ Q implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a not: ¬A implies:  Q false: False prop: and: P ∧ Q trans: Trans(T;x,y.E[x; y]) loc-ordered: loc-ordered(es;L)

Latex:
\mforall{}es:EO.  \mforall{}as,bs:E  List.
    (loc-ordered(es;as)  {}\mRightarrow{}  loc-ordered(es;bs)  {}\mRightarrow{}  (as  =  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}e:E.  ((e  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (e  \mmember{}  bs))))



Date html generated: 2016_05_16-AM-09_18_46
Last ObjectModification: 2015_12_28-PM-09_55_44

Theory : new!event-ordering


Home Index