Nuprl Lemma : nth_tl-es-before

[es:EO]. ∀[e:E]. ∀[n:ℕ||before(e)||].  (nth_tl(n;before(e)) filter(λa.before(e)[n] ≤loc a;before(e)) ∈ (E List))


Proof




Definitions occuring in Statement :  es-before: before(e) es-ble: e ≤loc e' es-E: E event_ordering: EO select: L[n] length: ||as|| filter: filter(P;l) nth_tl: nth_tl(n;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top and: P ∧ Q prop: guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T es-before: before(e) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) bnot: ¬bb assert: b es-le: e ≤loc e'  es-locl: (e <loc e') nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j select: L[n] cons: [a b] so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}[es:EO].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}||before(e)||].
    (nth\_tl(n;before(e))  =  filter(\mlambda{}a.before(e)[n]  \mleq{}loc  a;before(e)))



Date html generated: 2016_05_16-AM-09_35_49
Last ObjectModification: 2016_01_17-PM-01_32_42

Theory : new!event-ordering


Home Index