Nuprl Lemma : pred-member-es-open-interval

[es:EO]. ∀[e1,e2:E]. ∀[n:{1..||(e1, e2)||-}].  (pred((e1, e2)[n]) (e1, e2)[n 1] ∈ E)


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-pred: pred(e) es-E: E event_ordering: EO select: L[n] length: ||as|| int_seg: {i..j-} uall: [x:A]. B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} all: x:A. B[x] lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T le: A ≤ B sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q es-locl: (e <loc e') l_member: (x ∈ l) nat: cand: c∧ B ge: i ≥ 

Latex:
\mforall{}[es:EO].  \mforall{}[e1,e2:E].  \mforall{}[n:\{1..||(e1,  e2)||\msupminus{}\}].    (pred((e1,  e2)[n])  =  (e1,  e2)[n  -  1])



Date html generated: 2016_05_16-AM-09_36_38
Last ObjectModification: 2016_01_17-PM-01_32_00

Theory : new!event-ordering


Home Index