Nuprl Lemma : rel-pre-preserving-compose
∀es:EO
∀[P,Q:E ⟶ ℙ]. ∀[R:E ⟶ E ⟶ ℙ].
∀f1:{e:E| P e} ⟶ {e:E| Q e} . ∀f2:{e:E| Q e} ⟶ E.
((f1 is R-pre-preserving on P ∧ f2 is R-pre-preserving on Q)
⇒ f2 o f1 is R-pre-preserving on P)
Proof
Definitions occuring in Statement :
rel-pre-preserving: f is R-pre-preserving on P
,
es-E: E
,
event_ordering: EO
,
compose: f o g
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
rel-pre-preserving: f is R-pre-preserving on P
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
Latex:
\mforall{}es:EO
\mforall{}[P,Q:E {}\mrightarrow{} \mBbbP{}]. \mforall{}[R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}].
\mforall{}f1:\{e:E| P e\} {}\mrightarrow{} \{e:E| Q e\} . \mforall{}f2:\{e:E| Q e\} {}\mrightarrow{} E.
((f1 is R-pre-preserving on P \mwedge{} f2 is R-pre-preserving on Q)
{}\mRightarrow{} f2 o f1 is R-pre-preserving on P)
Date html generated:
2016_05_16-AM-10_20_14
Last ObjectModification:
2015_12_28-PM-09_22_31
Theory : new!event-ordering
Home
Index