Nuprl Lemma : st-atom-encrypt
∀[T:Id ⟶ Type]. ∀[tab:secret-table(T)]. ∀[keyv:ℕ + Atom1 × data(T)]. ∀[n:ℕ||tab|| ].
(st-atom(encrypt(tab;keyv);n) = st-atom(tab;n) ∈ Atom1)
Proof
Definitions occuring in Statement :
st-encrypt: encrypt(tab;keyv)
,
st-atom: st-atom(tab;n)
,
st-length: ||tab||
,
secret-table: secret-table(T)
,
data: data(T)
,
Id: Id
,
int_seg: {i..j-}
,
nat: ℕ
,
atom: Atom$n
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
union: left + right
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
secret-table: secret-table(T)
,
st-atom: st-atom(tab;n)
,
st-encrypt: encrypt(tab;keyv)
,
spreadn: spread3,
pi2: snd(t)
,
update: f[x:=v]
,
nat: ℕ
,
st-length: ||tab||
,
pi1: fst(t)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than: a < b
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
top: Top
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
guard: {T}
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[T:Id {}\mrightarrow{} Type]. \mforall{}[tab:secret-table(T)]. \mforall{}[keyv:\mBbbN{} + Atom1 \mtimes{} data(T)]. \mforall{}[n:\mBbbN{}||tab|| ].
(st-atom(encrypt(tab;keyv);n) = st-atom(tab;n))
Date html generated:
2016_05_16-AM-10_04_07
Last ObjectModification:
2016_01_17-PM-01_21_16
Theory : new!event-ordering
Home
Index