Nuprl Lemma : st-ptr_wf
∀[T:Id ⟶ Type]. ∀[tab:secret-table(T)]. (ptr(tab) ∈ ℕ)
Proof
Definitions occuring in Statement :
st-ptr: ptr(tab)
,
secret-table: secret-table(T)
,
Id: Id
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
st-ptr: ptr(tab)
,
secret-table: secret-table(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
Latex:
\mforall{}[T:Id {}\mrightarrow{} Type]. \mforall{}[tab:secret-table(T)]. (ptr(tab) \mmember{} \mBbbN{})
Date html generated:
2016_05_16-AM-10_01_16
Last ObjectModification:
2015_12_28-PM-09_29_48
Theory : new!event-ordering
Home
Index