Nuprl Lemma : sub-es-pred_wf
∀[es:EO]. ∀[dom:E ⟶ 𝔹]. ∀[e:E].  (sub-es-pred(es;dom;e) ∈ {e:E| ↑(dom e)} ?)
Proof
Definitions occuring in Statement : 
sub-es-pred: sub-es-pred(es;dom;e), 
es-E: E, 
event_ordering: EO, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
union: left + right
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
sub-es-pred: sub-es-pred(es;dom;e), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
exposed-bfalse: exposed-bfalse
Latex:
\mforall{}[es:EO].  \mforall{}[dom:E  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[e:E].    (sub-es-pred(es;dom;e)  \mmember{}  \{e:E|  \muparrow{}(dom  e)\}  ?)
Date html generated:
2016_05_16-AM-10_25_46
Last ObjectModification:
2016_01_17-PM-01_22_34
Theory : new!event-ordering
Home
Index