Nuprl Lemma : pv11_p1_about_threshold
∀[T:Type]. ∀[as,bs:bag(T)]. (#(as) < (#(as + bs) + 1) ÷ 2
⇒ #(as) < #(bs))
Proof
Definitions occuring in Statement :
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
divide: n ÷ m
,
add: n + m
,
natural_number: $n
,
universe: Type
,
bag-size: #(bs)
,
bag-append: as + bs
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
top: Top
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
true: True
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
guard: {T}
,
false: False
Latex:
\mforall{}[T:Type]. \mforall{}[as,bs:bag(T)]. (\#(as) < (\#(as + bs) + 1) \mdiv{} 2 {}\mRightarrow{} \#(as) < \#(bs))
Date html generated:
2016_05_17-PM-03_45_38
Last ObjectModification:
2015_12_29-PM-11_16_03
Theory : paxos!synod
Home
Index