Nuprl Lemma : pv11_p1_leader_adopted_wf
∀[Cmd:ValueAllType]. ∀[ldrs_uid:Id ⟶ ℤ].
  (pv11_p1_leader_adopted(Cmd;ldrs_uid) ∈ Id
   ⟶ (pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
   ⟶ (pv11_p1_Ballot_Num() × 𝔹 × ((ℤ × Cmd) List))
   ⟶ bag(pv11_p1_Ballot_Num() × ℤ × Cmd))
Proof
Definitions occuring in Statement : 
pv11_p1_leader_adopted: pv11_p1_leader_adopted(Cmd;ldrs_uid), 
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num(), 
Id: Id, 
list: T List, 
vatype: ValueAllType, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
int: ℤ, 
bag: bag(T)
Definitions unfolded in proof : 
vatype: ValueAllType, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pv11_p1_leader_adopted: pv11_p1_leader_adopted(Cmd;ldrs_uid), 
spreadn: spread3, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
empty-bag: {}, 
nil: [], 
subtype_rel: A ⊆r B
Latex:
\mforall{}[Cmd:ValueAllType].  \mforall{}[ldrs$_{uid}$:Id  {}\mrightarrow{}  \mBbbZ{}].
    (pv11\_p1\_leader\_adopted(Cmd;ldrs$_{uid}$)  \mmember{}  Id
      {}\mrightarrow{}  (pv11\_p1\_Ballot\_Num()  \mtimes{}  ((pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbZ{}  \mtimes{}  Cmd)  List))
      {}\mrightarrow{}  (pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbB{}  \mtimes{}  ((\mBbbZ{}  \mtimes{}  Cmd)  List))
      {}\mrightarrow{}  bag(pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbZ{}  \mtimes{}  Cmd))
Date html generated:
2016_05_17-PM-02_57_31
Last ObjectModification:
2015_12_29-PM-11_23_53
Theory : paxos!synod
Home
Index