Nuprl Lemma : pv11_p1_leader_adopted_wf
∀[Cmd:ValueAllType]. ∀[ldrs_uid:Id ⟶ ℤ].
(pv11_p1_leader_adopted(Cmd;ldrs_uid) ∈ Id
⟶ (pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
⟶ (pv11_p1_Ballot_Num() × 𝔹 × ((ℤ × Cmd) List))
⟶ bag(pv11_p1_Ballot_Num() × ℤ × Cmd))
Proof
Definitions occuring in Statement :
pv11_p1_leader_adopted: pv11_p1_leader_adopted(Cmd;ldrs_uid)
,
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num()
,
Id: Id
,
list: T List
,
vatype: ValueAllType
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
int: ℤ
,
bag: bag(T)
Definitions unfolded in proof :
vatype: ValueAllType
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
pv11_p1_leader_adopted: pv11_p1_leader_adopted(Cmd;ldrs_uid)
,
spreadn: spread3,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
empty-bag: {}
,
nil: []
,
subtype_rel: A ⊆r B
Latex:
\mforall{}[Cmd:ValueAllType]. \mforall{}[ldrs$_{uid}$:Id {}\mrightarrow{} \mBbbZ{}].
(pv11\_p1\_leader\_adopted(Cmd;ldrs$_{uid}$) \mmember{} Id
{}\mrightarrow{} (pv11\_p1\_Ballot\_Num() \mtimes{} ((pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List))
{}\mrightarrow{} (pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbB{} \mtimes{} ((\mBbbZ{} \mtimes{} Cmd) List))
{}\mrightarrow{} bag(pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd))
Date html generated:
2016_05_17-PM-02_57_31
Last ObjectModification:
2015_12_29-PM-11_23_53
Theory : paxos!synod
Home
Index