Nuprl Lemma : pv11_p1_lt_bnum_trans1
∀ldrs_uid:Id ⟶ ℤ. ∀b1,b2,b3:pv11_p1_Ballot_Num().
((↑(b1 < b2))
⇒ (↑(pv11_p1_leq_bnum(ldrs_uid) b2 b3))
⇒ (↑(b1 < b3)))
Proof
Definitions occuring in Statement :
pv11_p1_lt_bnum: pv11_p1_lt_bnum(ldrs_uid)
,
pv11_p1_leq_bnum: pv11_p1_leq_bnum(ldrs_uid)
,
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num()
,
Id: Id
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
pv11_p1_lt_bnum: pv11_p1_lt_bnum(ldrs_uid)
,
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num()
,
pv11_p1_leq_bnum: pv11_p1_leq_bnum(ldrs_uid)
,
pv11_p1_lt_bnum': pv11_p1_lt_bnum'(ldrs_uid)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
pv11_p1_leq_bnum': pv11_p1_leq_bnum'(ldrs_uid)
,
cand: A c∧ B
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
isl: isl(x)
,
btrue: tt
,
unit: Unit
,
true: True
Latex:
\mforall{}ldrs$_{uid}$:Id {}\mrightarrow{} \mBbbZ{}. \mforall{}b1,b2,b3:pv11\_p1\_Ballot\_Num().
((\muparrow{}(b1 < b2)) {}\mRightarrow{} (\muparrow{}(pv11\_p1\_leq\_bnum(ldrs$_{uid}$) b2 b3)) {}\mRightarrow{} (\muparrow{}(b1 < b3)))
Date html generated:
2016_05_17-PM-03_12_40
Last ObjectModification:
2016_01_18-AM-11_20_01
Theory : paxos!synod
Home
Index