Nuprl Lemma : pv11_p1_on_p1b_wf
∀[Cmd:ValueAllType]
  (pv11_p1_on_p1b(Cmd) ∈ pv11_p1_Ballot_Num()
   ⟶ Id
   ⟶ (Id × pv11_p1_Ballot_Num() × pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
   ⟶ (bag(Id) × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
   ⟶ (bag(Id) × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List)))
Proof
Definitions occuring in Statement : 
pv11_p1_on_p1b: pv11_p1_on_p1b(Cmd), 
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num(), 
Id: Id, 
list: T List, 
vatype: ValueAllType, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
int: ℤ, 
bag: bag(T)
Definitions unfolded in proof : 
vatype: ValueAllType, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pv11_p1_on_p1b: pv11_p1_on_p1b(Cmd), 
spreadn: spread4, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
assert: ↑b, 
false: False, 
bnot: ¬bb, 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[Cmd:ValueAllType]
    (pv11\_p1\_on\_p1b(Cmd)  \mmember{}  pv11\_p1\_Ballot\_Num()
      {}\mrightarrow{}  Id
      {}\mrightarrow{}  (Id  \mtimes{}  pv11\_p1\_Ballot\_Num()  \mtimes{}  pv11\_p1\_Ballot\_Num()  \mtimes{}  ((pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbZ{}  \mtimes{}  Cmd)  List))
      {}\mrightarrow{}  (bag(Id)  \mtimes{}  ((pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbZ{}  \mtimes{}  Cmd)  List))
      {}\mrightarrow{}  (bag(Id)  \mtimes{}  ((pv11\_p1\_Ballot\_Num()  \mtimes{}  \mBbbZ{}  \mtimes{}  Cmd)  List)))
Date html generated:
2016_05_17-PM-02_54_44
Last ObjectModification:
2015_12_29-PM-11_25_10
Theory : paxos!synod
Home
Index