Nuprl Lemma : Process-apply_wf
∀[M:Type ⟶ Type]
  ∀[P:Process(P.M[P])]. ∀[m:pMsg(P.M[P])].  (Process-apply(P;m) ∈ Process(P.M[P]) × pExt(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
Process-apply: Process-apply(P;m), 
pExt: pExt(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Process: Process(P.M[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
Process-apply: Process-apply(P;m), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
pExt: pExt(P.M[P]), 
Process: Process(P.M[P]), 
pMsg: pMsg(P.M[P]), 
pCom: pCom(P.M[P]), 
Com: Com(P.M[P]), 
tagged+: T |+ z:B
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[P:Process(P.M[P])].  \mforall{}[m:pMsg(P.M[P])].    (Process-apply(P;m)  \mmember{}  Process(P.M[P])  \mtimes{}  pExt(P.M[P])) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_23_37
Last ObjectModification:
2015_12_29-PM-05_27_32
Theory : process-model
Home
Index